0.1 A Note on the derivation of the model of "Advertising, Intangible Investment, and Unpriced Entertainment,"
Leonard I. Nakamura, June 1, 2004

SSHRC Conference, June 2004
free entertainment goods with advertising
M is entertainment good
max
\[U(z, M) = z + (b - a_u) M - \frac{1}{2} M^2 \]
b, a_u > 0, z is numeraire good,
s.t. \(z + pM = y = 1 - M (c_M + \alpha') + pM \rightarrow z = 1 - M (c_M + \alpha') \)
p is price of entertainment good
\[\Lambda = z + (b - a_u) M - \frac{1}{2} M^2 - \lambda (z + pM - y) \]
\[\frac{d\Lambda}{dM} = b - a_u - M - \lambda p = 0 \rightarrow M = b - a_u - p \]
Firm max:
firm set price \(p_M \) for good and gets \(\alpha \) per unit sold from advertiser;
distribution cost per unit is \(\alpha' + c_M \)
Max \(\Pi = (p + \alpha - \alpha' - c_M) M \)
s.t. \(M = b - a_u - p \)
\[\Pi = (p + \alpha - \alpha' - c_M) (b - a_u - p) \]
\[\frac{d\Pi}{dp} = b - a_u - p - (p + \alpha - \alpha' - c_M) = b - a_u + c_M - (\alpha - \alpha') - 2p = 0 \rightarrow \]
\[p = \frac{1}{2} (b - a_u + c_M - (\alpha - \alpha')) \]
\[\frac{d^2\Pi}{dp^2} = -2 \]
Thus if \(\alpha - \alpha' > b - a_u + c_M \) then \(p \leq 0 \).
\[p=0 \rightarrow M = b - a_u \]
\[\Pi = (\alpha - \alpha' - c_M) (b - a_u) > (b - a_u)^2 \]
\[U = z + (b - a_u) M - \frac{1}{2} M^2 = 1 - (b - a_u) (c_M + \alpha') + \frac{1}{2} (b - a_u)^2 = 1 + \frac{1}{2} (b - a_u) (b - a_u - c_M - \alpha') \]
\[\text{note: } (c_M + \alpha') < \alpha - (b - a_u) \rightarrow \]
\[U=1-(b-a_u)(c_M+\alpha')+(\frac{1}{2}(b-a_u)^2>1-(b-a_u)[\alpha-(b-a_u)]+\frac{1}{2}(b-a_u)^2= \]
\[1 - \alpha (b - a_u) + \frac{1}{2} (b - a_u)^2 \]
Cost to advertisers: \(\alpha M = \alpha (b - a_u) \)

transmission cost: \(c_M M = c_M (b - a_u) \)
direct advertising cost \(\alpha'M = \alpha' (b - a_u) \)
value of entertainment \((\alpha - \alpha' - c_m) (b - a_u) \)
entertainment subsidy \((\alpha - \alpha' - c_m) (b - a_u) \left(\frac{\alpha}{\alpha - c_M} \right) \)
total advt cost \(\alpha' (b - a_u) \left(\frac{\alpha}{\alpha - c_M} \right) \)
direct utility gain: \((b - a_u) M - \frac{1}{2} M^2 = \frac{1}{2} (b - a_u)^2 \)

If advertising is absent, then:
\[p = \frac{1}{2} (b + c_M) \]
\[M = \frac{b - c_M}{2} \]
\[\Pi = (p - c_M) (M) = \frac{1}{4} (b - c_M)^2 \]
\[U(z, M) = z + bM - \frac{1}{2} M^2 \]
\[z = 1 - Mc_M \]

Direct utility gain:
\[
\frac{bM - \frac{1}{2} M^2}{(b-c_M)(3b+c_M)} = \frac{b (\frac{b-c_M}{2}) - \frac{1}{2} (\frac{b-c_M}{2})^2}{8} = \frac{(b-c_M)(4b-(b-c_M))}{8} \]

Total utility gain:
\[
z + bM - \frac{1}{2} M^2 = 1 - Mc_M + bM - \frac{1}{2} M^2 = 1 + \frac{1}{2} (b - c_M)^2 - \frac{1}{2} (\frac{b-c_M}{2})^2 \]
\[
U = 1 + (b - c_M) \left(\frac{b-c_M}{2} - \frac{1}{2} (\frac{b-c_M}{2})^2 \right) = 1 + \frac{3}{8} (b - c_M)^2 \]

cost to consumers:
\[
pM = \frac{1}{4} (b^2 - c_M^2) \]
transmission cost:
\[
c_M M = c_M (b - c_M) \]
payment to entertainer:
\[
\frac{1}{4} (b - c_M)^2 \]